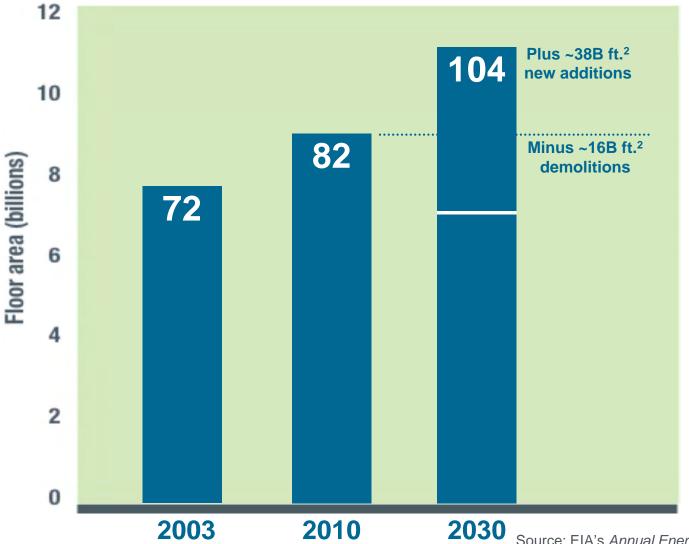
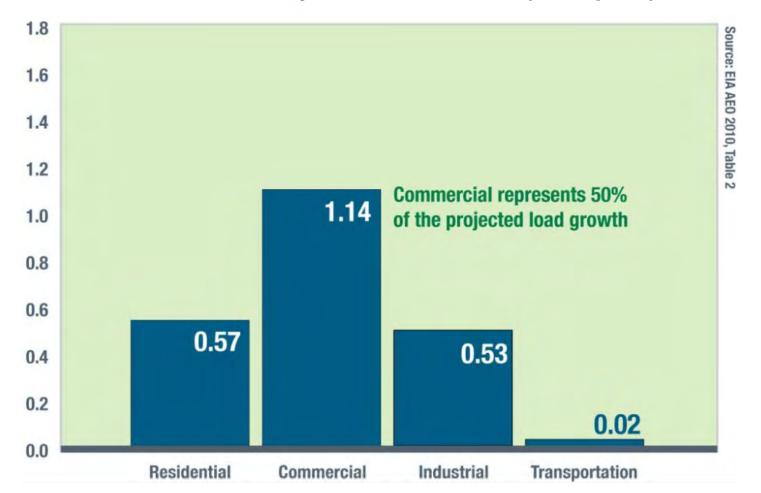

Are High-Performance Buildings Really Performing?

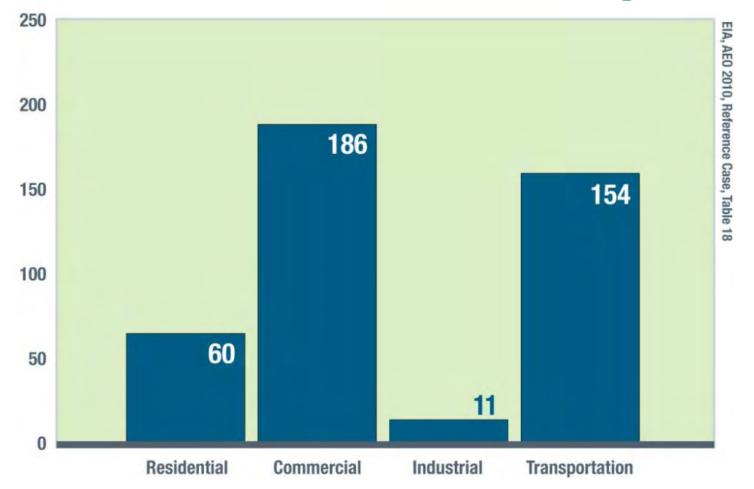


Drury B. Crawley, Ph.D. ASHRAE Pikes Peak Chapter April 9, 2010

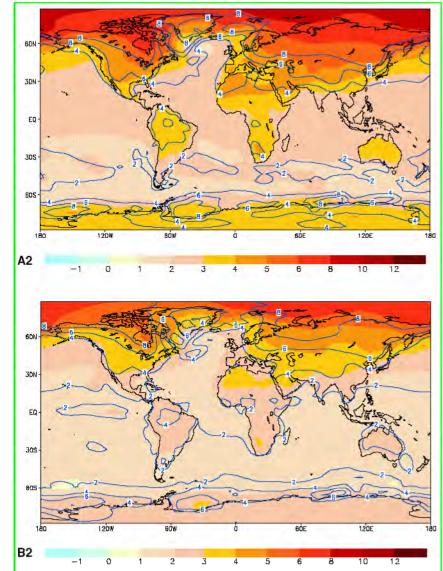
Buildings' Energy Use

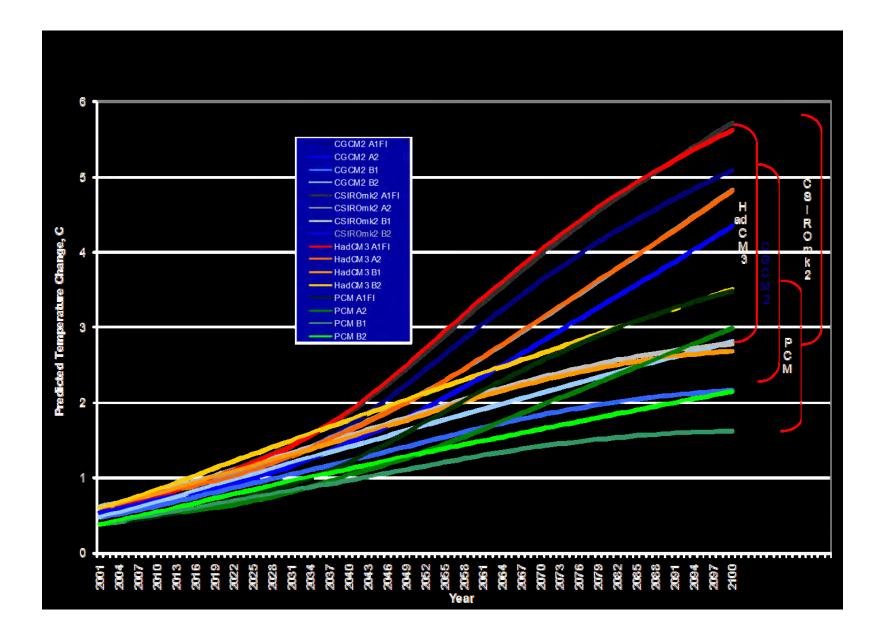


Commercial Square Footage Projections

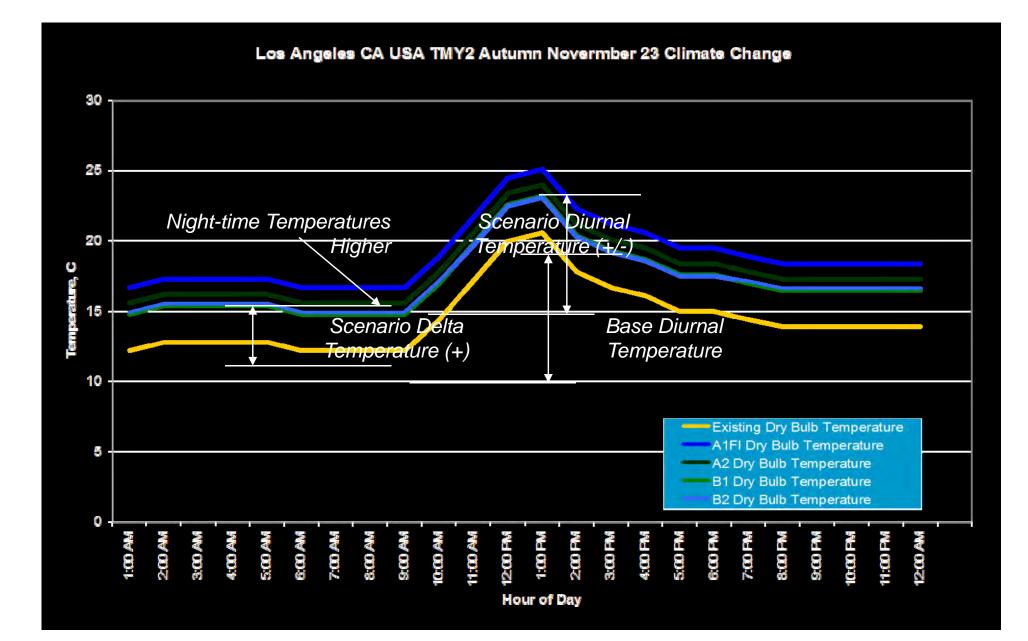

Source: EIA's Annual Energy Outlook 2009, Table 5.

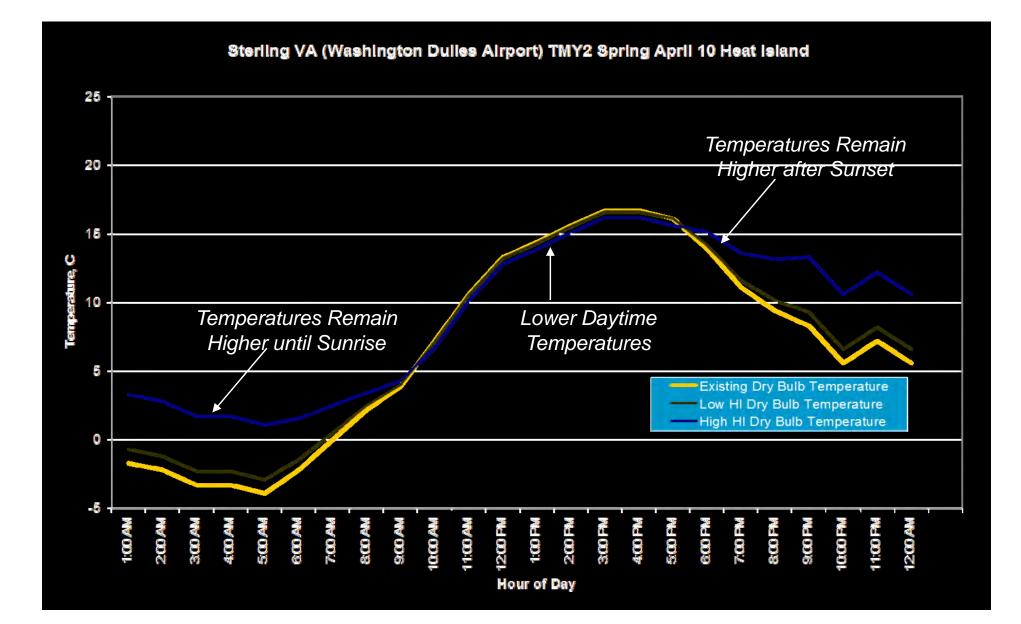
2010 to 2025, by End-Use Sector (site quad)


Projected Increase in Carbon Dioxide Emissions



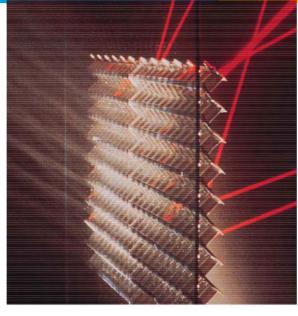
Global Warming?

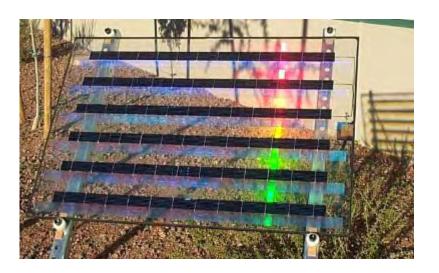

At least climate change


Range of Annual Average Temperature Change Predicted

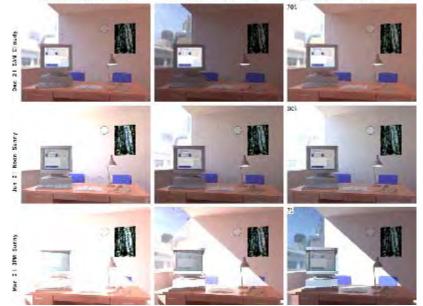
What do Climate Change Scenarios look like?

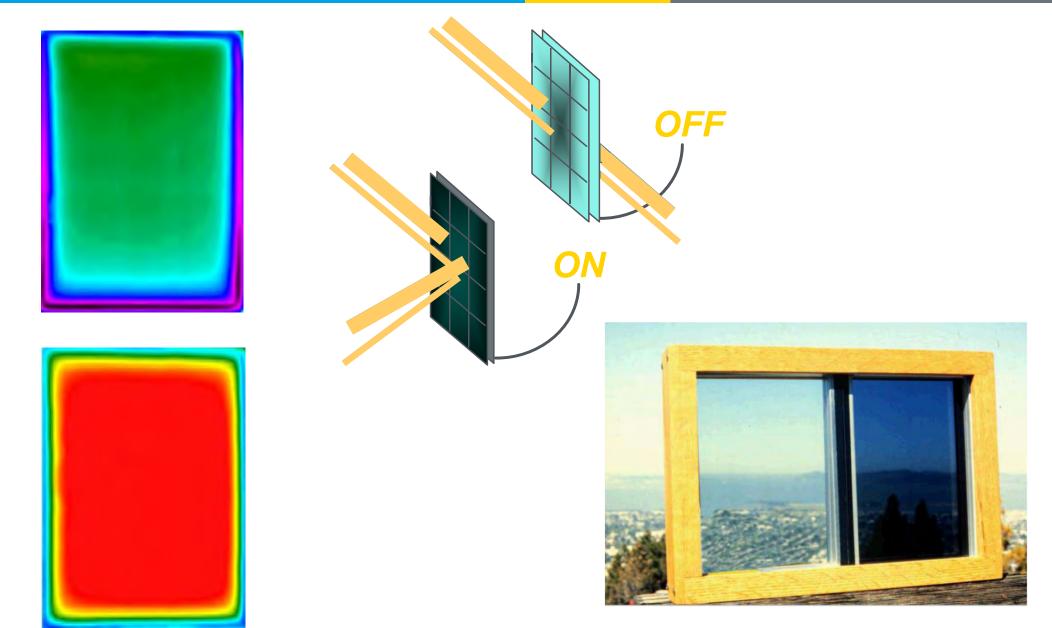
Heat Island




Current Technologies: The Cool Stuff Out There

Daylighting



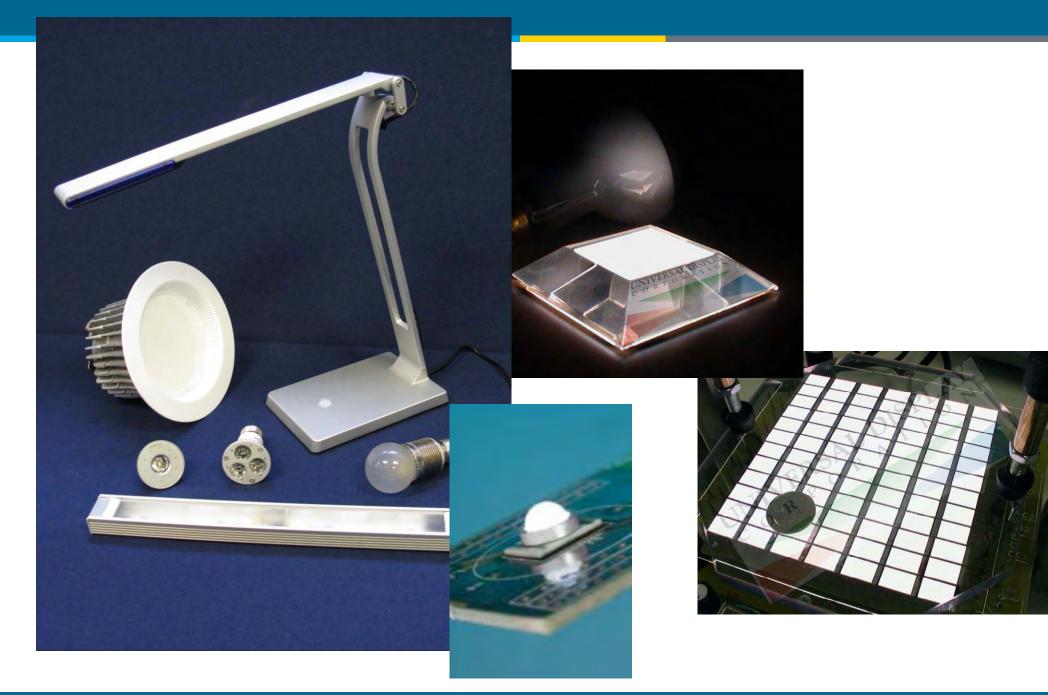

Clear Glass, Tvis - 881

Tinted Glass, Tyls = 30% Electrochronic, Tyls = 7-70%

Photo-chromic Windows Thermo-

Super Envelopes

Lighting: Moving from incandescent and fluorescent to LED and OLED

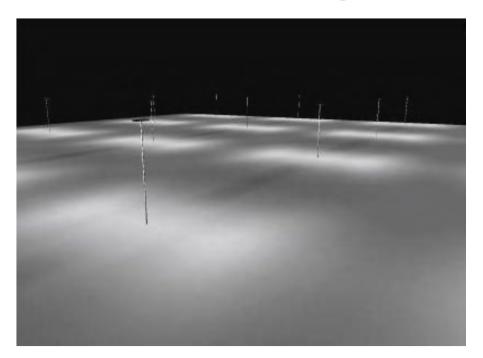

LED Lighting Sources

Subcompact Fluorescent Lighting

SSL and OLED

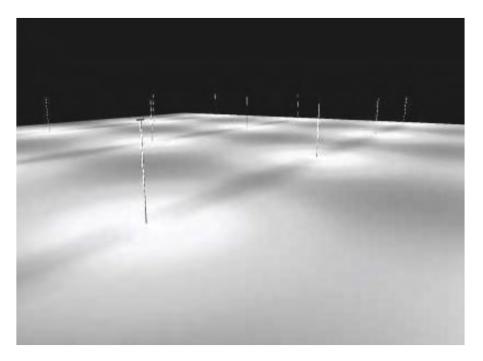
- Potential for impressive energy-efficiency improvements and large savings on maintenance
- Directional control and uniformity
- Fully dimmable

- Reduced glare, long life and durability projections
- Low lumen depreciation comparable to traditional metal halide and high-pressure sodium technology



LED Site (Parking Lot) Lighting Specification

- Retailer Energy Alliance completed specification in early 2009
- Installed at Walmart test site (Leavenworth, Kansas) July 2009

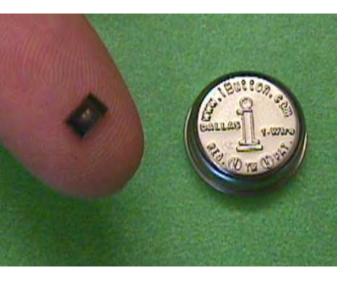


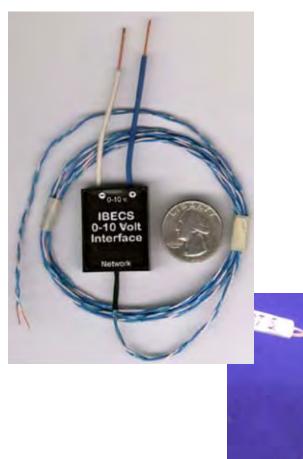
Metal Halide Parking Lot

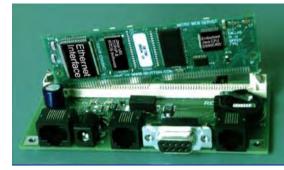
Average: 3.5 Maximum: 9.0 Minimum: 0.9 Max : Min: 10.0 455 W MH

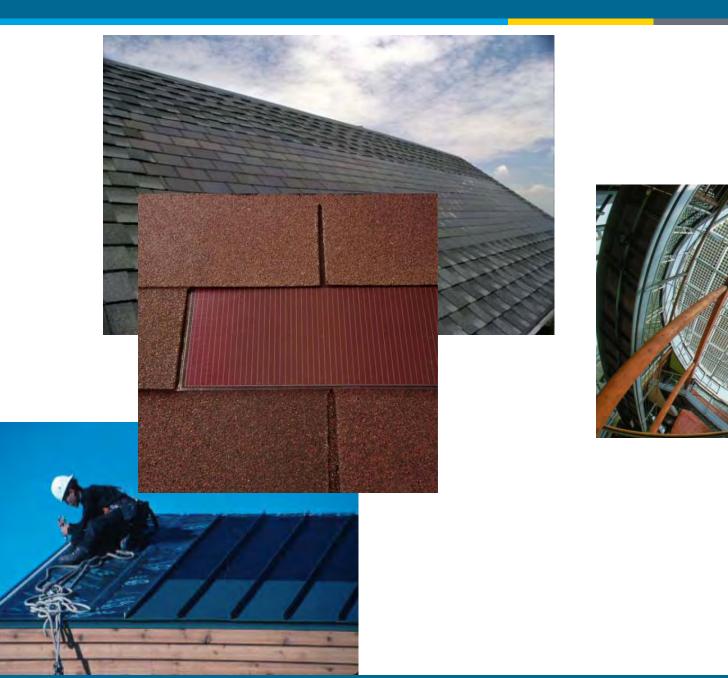
LED Parking Lot

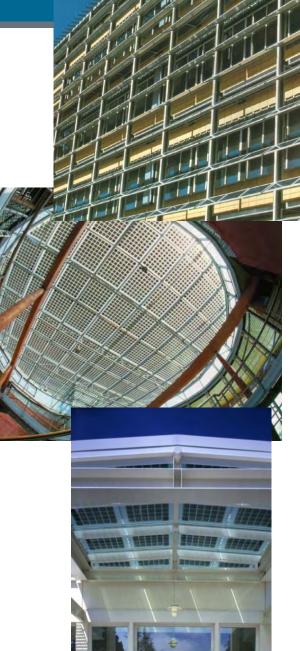
Average: 2.8 Maximum: 5.2 Minimum: 1.2 Max : Min: 4.3 218 W LED


What it looks like









Photovoltaic Power

Fuel Cells, Microturbines, DHCP

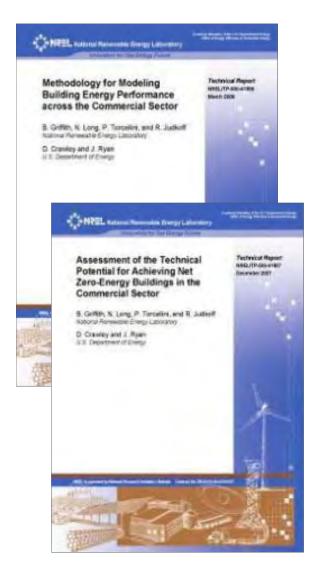
Emulating Biological Solutions

- High first costs for energy-efficient technologies
- Consumer concerns about quality and reliability
- Lack of a detailed business case for energy efficiency investments
- Dearth of customizable strategies for design, installation, control and commissioning
- Workforce capabilities: A&E firms, construction crews and O&M teams unfamiliar with latest tech

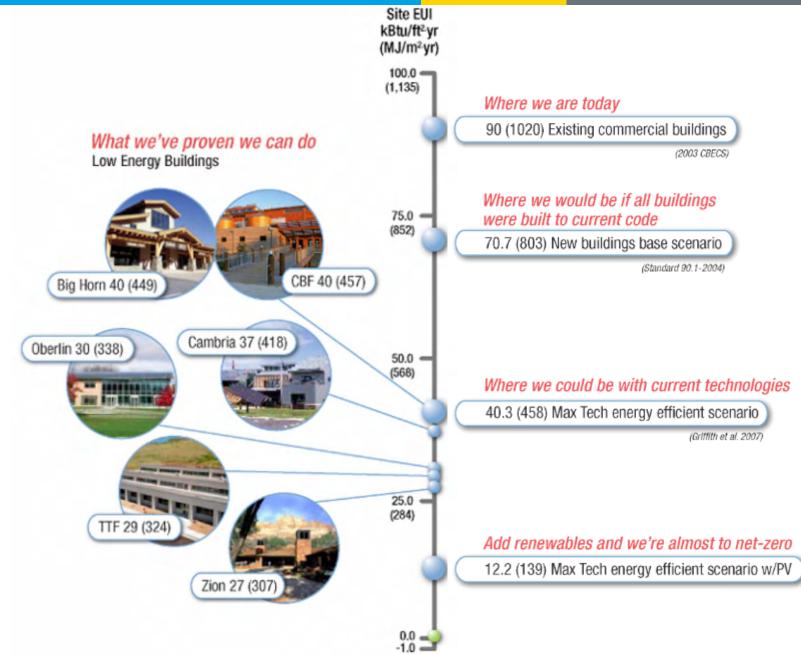
OK, Low Energy, Zero Energy... lots of definitions

ZEB Renewable Hierarchy

- Energy Efficiency

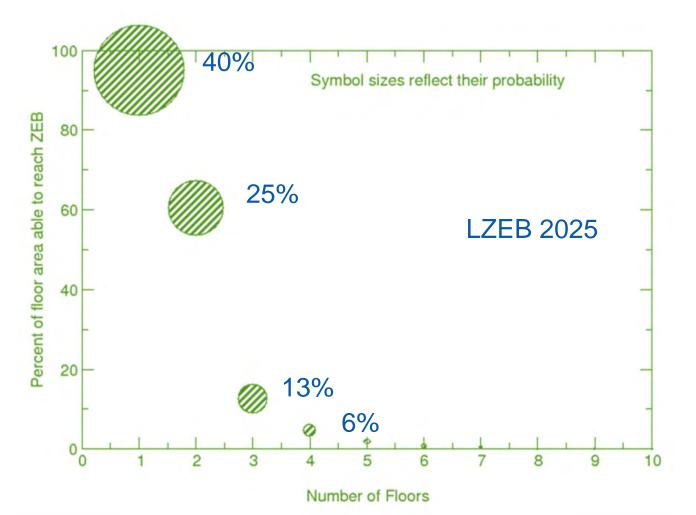

 daylighting, CHP, passive solar
- 2. Footprint supply options– building mounted PV or wind
- 3. Site supply options– parking lot PV or wind
- 4. Imported supply options– wood chips, ethanol
- 5. Renewable credits

- Net-Zero Site Energy: produces as much renewable energy as it uses annually, when accounted for at site.
- Net-Zero Source Energy: produces (or purchases) as much renewable energy as it uses annually, when accounted for at source. Source energy refers to primary energy used to extract, process, generate, and deliver energy to the site.
- Net-Zero Energy Costs: building in which money the utility pays the building owner for the renewable energy the building exports to the grid is at least equal to the amount the owner pays the utility for energy services and energy used annually.
- Net-Zero Energy Emissions: produces (or purchases) enough emissionsfree renewable energy to offset emissions from all energy used in the building annually. Carbon, nitrogen oxides, and sulfur oxides are common emissions that ZEBs offset.

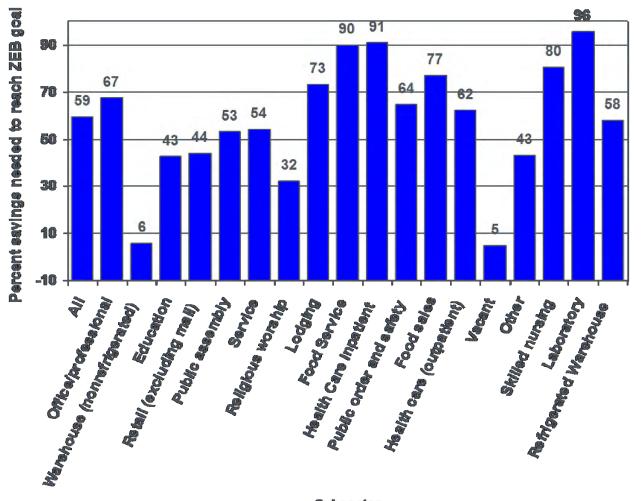

Can we get to Net-Zero Energy?

Technical Potential

- Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector www.nrel.gov/docs/fy08osti/41957.pdf
- Methodology for Analyzing the Technical Potential for Energy Performance Across the Commercial Sector <u>www.nrel.gov/docs/fy08osti/41956.pdf</u>


Great Potential in Commercial Buildings

ZEB Characteristics


Number of floors impacts ability to reach ZEB goal

- Roof area
- Daylighting

Energy Efficiency

Need 60% to 70% decrease in energy consumption of commercial buildings

Low-Energy Case Study Buildings

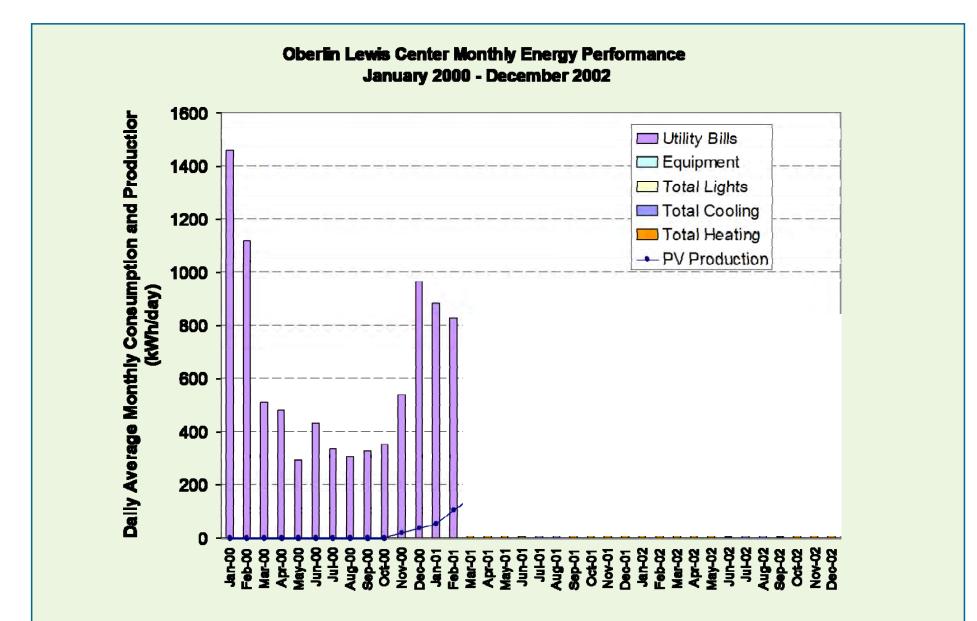
- Oberlin College Lewis Center—Ohio Goal: zero net site energy use (79%)
- Zion Visitor Center—Utah Goal: 70% energy cost savings (65%)
- Cambria Office Building—Pennsylvania Goal: 66% energy cost savings (43%)
- Chesapeake Bay Foundation—Maryland Goal: LEED 1.0 Platinum Rating (25%)
- Thermal Test Facility—Colorado Goal: 70% energy savings (51%)
- **BigHorn Home Improvement Center—Colorado** Goal: 60% energy cost savings (53%)

Six Buildings

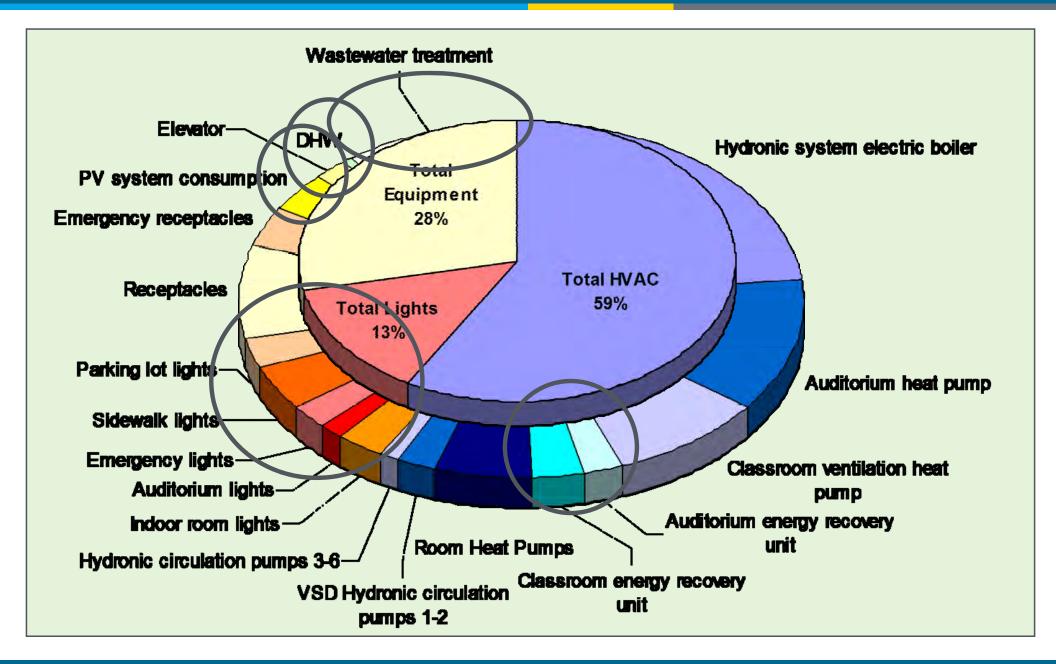
- Each had committed owners
- Each set aggressive energy goals
- Each was monitored for at least one year
- Each building was successful
- Each had some problems
- Many of the problems were similar

- How do low-energy buildings perform?
- Where are the gaps between design goals and actual performance?
- What are (technical) issues for creating low-energy buildings?
- Can we reach "net-zero energy buildings"?

Lewis Center for Environmental Studies

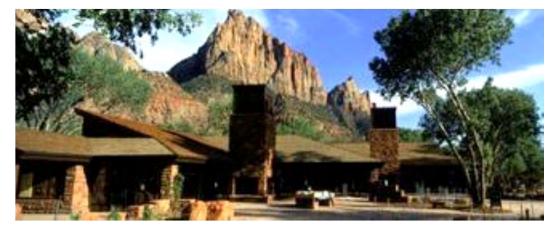

- 13,600 ft² classroom and offices
- 60 kW PV system
- Daylighting
- Ground-source heat pumps
- Water treatment
- Natural ventilation

Lewis Center—Oberlin College



- Geothermal wells
- BIPV
- Daylighting
- Energy-efficient, integrated design—40% less than code
- Indoor air quality (low-VOC materials)
- Material selection (durability, recycled content, certified products)
- Living machine
- Landscape (indigenous, aquatic)

Monthly Energy Totals—Oberlin



End-Use Energy

Zion Visitor Center

- 7.2 kW PV system (UPS)
- Passive evaporative cooling
- Excellent thermal envelope
- Trombe walls
- Overhangs
- Daylighting

BigHorn Home Improvement Center

- 18,400 ft² retail store and 24,000 ft² warehouse
- Daylighting
- Natural ventilation (no mechanical cooling)
- Transpired solar collector
- Radiant floors
- PV

NREL Thermal Test Facility (TTF)

- 10,000 ft² laboratory and office
- Typical steel frame building
- Good insulation package
- Simple daylighting design
- 2-stage evaporative cooling
- Instantaneous hot water

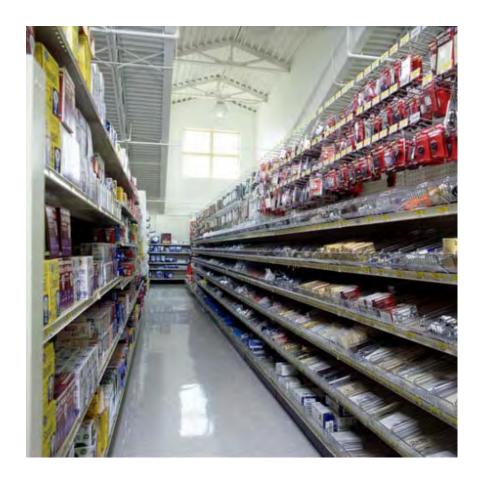
Cambria Office Building

- 34,500 ft² spec office for PA DEP
- 18.2 kW PV system
- Ground-source heat
 pumps
- Under-floor air distribution
- Heat recovery ventilators
- Daylighting

Chesapeake Bay Foundation Merrill Center

- 31,000 ft²
- Ground-source heat pumps
- Daylighting
- Passive solar heating
- Solar DHW
- Natural ventilation
- PV
- 1st Platinum LEED building

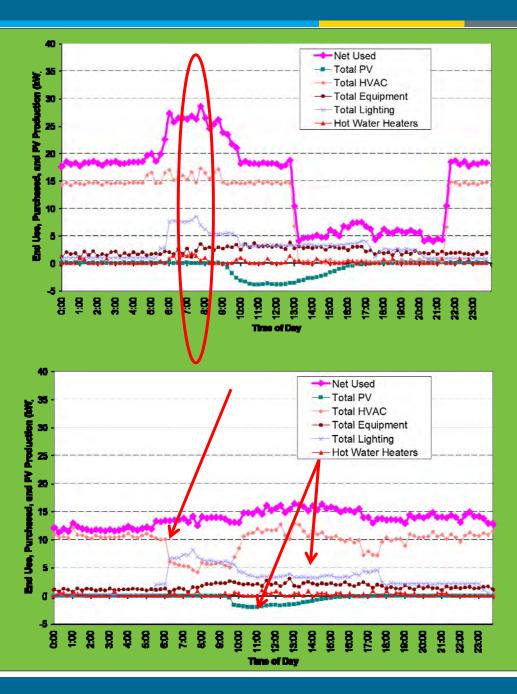
- TTF: clerestories, auto on/off control
- Oberlin: high glass, manual dimming control
- Cambria: clerestories, indirect lighting, lower lighting levels
- BigHorn: clerestories, translucent panels, stepped CF lighting
- Zion: clerestories, high glass, on/off control
- CBF: clerestories, high glass, on/off semi-automatic control


Daylighting Design

- Slight over design needed
 - Never as bright as predicted
 - Darker colors common issue
 - Occupant perception
 - Do not over glaze (especially lower windows)
- Screens on operable windows
- Frame areas
- Glass type—errors?
- Glare control

Lighting Design

- Lower levels acceptable in most cases
 - Effective task
 lighting allowed
 lower ambient levels
 - Daylighting augmented spaces; allowed for lower levels at night
 - Circuiting



HVAC Systems-Natural Ventilation

- Natural ventilation (3 buildings)
 - Occupants don't want to interact with building (somewhat different than residential)
 - Automatic windows worked well
 - Set-up issues
 - Interface with EMS
 - Open area (screens, window distance)
 - Hardware failures
 - May be better to use relief dampers
- Control strategies
- More limited than economizer

- Mixed results: Controls only as smart as the building operator
- Probably the biggest success factor
- Flexibility and well thought out control algorithms
 important for tuning building
- Demand management
 - Set points, setback, control to goals and comfort
- Staff must be able to program
 - All systems were reprogrammed from original sequencing

PV Systems (5 of 6 projects)

- Excellent for UPS systems
- Roughly 1 kWh/watt installed capacity
- Issues:
 - Parasitic loads (isolation transformers)
 - Inverter trips
 - Inverter programming

- To make better buildings, designers need feedback (both positive and negative)
- Measuring building performance
 - how the building is being operated
 - understand the culture of the organization
 - where the energy is going

Monitoring

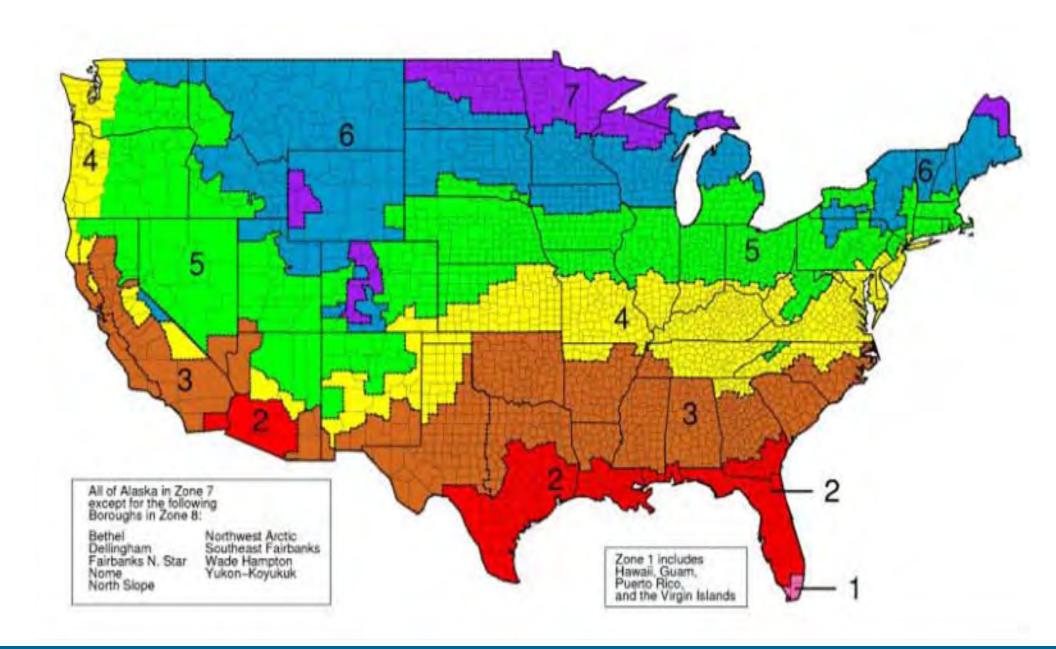
- Dedicated monitoring systems work better
- Develop detailed monitoring plans with questions to answer
- Strive toward common results (not always possible)
- Energy performance improves with monitoring

ZEB Database

First Database of Net-Zero Energy Buildings: http://commercialbuildings.energy.gov/

Building	Location	Floor Area (ft²)	Annual Purchased Energy (kBtu/ft ²)	
Aldo Leopold Legacy Center	Baraboo, WI	11,900	-2.02	
Audubon Center at Debs Park	Los Angeles, CA	5,020		
Challengers Tennis Club	Los Angeles, CA	3,500	-0.0955	
Environmental Tech. Center, Sonoma State	Rohnert Park, CA	2,200	-1.47	
Hawaii Gateway Energy Center	Kailua-Kona, HI	3,600	-3.46	
IDeAs Z2 Design Facility	San Jose, CA	6,560	-0.00052	
Oberlin College Lewis Center	Oberlin, OH	13,600	-4.23	
Science House	St. Paul, MN	1,530	0	

Building	Building Use	PV System Size	% Savings w/o PV	Floors	HVAC System Type
Aldo Leopold	Commercial office	406	70%	1	GSHP; Radiant Slab; Earth-Tube; Natural Ventilation
Audubon Center	Recreation; Park	25	?	1	Solar Hot Water; Absorption Chiller; Natural Ventilation
Challengers Tennis Club	Recreation	6	60%	2	Natural Ventilation
Environmental Tech. Center, Sonoma State	Higher education; Laboratory	3	80%	1	Natural Ventilation; Passive Solar Heating/Cooling; Thermal Mass; Radiant Heating
Hawaii Gateway	Commercial office	20	80%	1	Natural Ventilation; Cold Sea Water to Cool Air
IDeAs Z2	Commercial office	30	60%	2	GSHP; Radiant Slab
Oberlin College	Higher education; Library; Assembly	160	54%	2	GSHP; Radiant Slab
Science House	Interpretive Center	8.8	60%	1	GSHP; Natural Ventilation; Passive Solar Heating


First Steps to Zero — Advanced Energy Design Guides (AEDGs)

30% Advanced Energy Design Guides

- ASHRAE, IES, AIA, USGBC, and DOE developing series of energy design guides for achieving 30% lower energy than 90.1
- Prescriptive tabular approach
- Small office, small retail, K–12 schools, small warehouses and self-storage, highway lodging, and small healthcare
- LEED points without simulation!
- Next up:
 - 50% technical analysis completed for medium office, highway lodging, medium box retail, grocery store
 - www.ashrae.org/aedg

Recommendations by Climate Zone

Tables with Recommendation by Climate Zone

Item	Component	Recommendation	How-To's in Chapter 4
Roof	Insulation entirely above deck	R-20 c.i.	EN2, 17, 20-21
	Metal building	R-13 + R-19	EN3, 17, 20-21
	Attic and other	R-38	EN4, 17-18, 20-21
	Single rafter	R-38 + R-5 c.i.	EN5, 17, 20-21
	Surface reflectance/emittance	No recommendation	
Walls	Mass (HC > 7 Btu/ft ²)	R-11.4 c.i.	EN6, 17, 20-21
	Metal building	R-13 + R-13	EN7, 17, 20-21
	Steel framed	R-13 + R-7.5 c.i.	EN8, 17, 20-21
	Wood framed and other	R-13 + R-3.8 c.i.	EN9, 17, 20-21
	Below-grade walls	R-7.5 c.i.	EN10, 17, 20-21
Floors	Mass	R-10.4 c.i.	EN11, 17, 20-21
	Steel framed	R-30	EN12, 17, 20-21
	Wood framed and other	R-30	EN12, 17, 20-21
Slabs	Unheated	No recommendation	EN17, 19-21
	Heated	R-10 for 36 in.	EN14, 17, 19-21
Doors	Swinging	U-0.70	EN15, 20-21
	Non-swinging	U-0.50	EN16, 20-21
Vertical Glazing	Window to wall ratio (WWR)	20% to 40% maximum	EN23, 36-37
	Thermal transmittance	U-0.42	EN25, 31
	Solar heat gain coefficient (SHGC)		EN27-28
	Window orientation	$(A_N * SHGC_N + A_S * SHGC_S) >$ $(A_E * SHGC_E + A_W * SHGC_W)$	A _x –Window area for orientation x EN26-32
	Exterior sun control (S, E, W only)	Projection factor 0.5	EN24, 28, 30, 36, 40, 42 DL5-6
Skylights	Maximum percent of roof area	3%	DL5-7, DL8, DL13
	Thermal transmittance	U-0.69	DL7, DL8, DL13
	Solar heat gain coefficient (SHGC)		DL8, DL13
Interior Lighting	Lighting power density (LPD)	0.9 VV/ft ²	EL1-2, 4, 8, 10-16
Interior Lighting	Light source (linear fluorescent)	90 mean lumens/watt	EL4, 9, 17
	Ballast	Electronic ballast	EL4
	Dimming controls for daylight harvesting for WWR 25% or higher	Dim fixtures within 12 ft of N/S window wall or within 8 ft of skylight edge	
	Occupancy controls	Auto-off all unoccupied rooms	DL2, EL5, 6
	Interior room surface reflectances	80%+ on ceilings, 70%+ on walls and vertical partitions	DL3-4, EL3
HVAC	Air conditioner (0-65 KBtuh)	13.0 SEER	HV1- 2, 4, 6, 12, 16-17, 20
	Air conditioner (>65-135 KBtuh)	11.0 EER/11.4 IPLV	HV1- 2, 4, 6, 12, 16-17, 20
	Air conditioner (>135-240 KBtuh)	10.8 EER/11.2 IPLV	HV1- 2, 4, 6, 12, 16-17, 20
	Air conditioner (>240 KBtuh)	10.0 EER/10.4 IPLV	HV1- 2, 4, 6, 12, 16-17, 20
	Gas furnace (0-225 KBtuh - SP)	80% AFUE or E	HV1- 2, 6, 16, 20
	Gas furnace (0-225 KBtuh - Split)	90% AFUE or Et	HV1- 2, 6, 16, 20
	Gas furnace (>225 KBtuh)	80% E _c	HV1- 2, 6, 16, 20
	Heat pump (0-65 KBtuh)	13.0 SEER/7.7 HSPF	HV1- 2, 4, 6, 12, 16-17, 20
	Heat pump (>65-135 KBtuh)	10.6 EER/11.0 IPLV/3.2 COP	HV1- 2, 4, 6, 12, 16-17, 20
	Heat pump (>135 KBtuh)	10.1 EER/11.0 IPLV/3.1 COP	HV1-2, 4, 6, 12, 16-17, 20
	Air conditioners & heat pumps - SP	Cooling capacity > 54 KBtuh	HV23
Economizer		- · · · · · · · · · · · · · · · · · · ·	8-MA-00 6.1
Economizer Ventilation		Motorized control	HV7-8
	Outdoor air damper	Motorized control CO ₂ sensors	HV7-8 HV7, 22
Ventilation	Outdoor air damper Demand control	CO ₂ sensors	HV7, 22
	Outdoor air damper Demand control Friction rate	CO ₂ sensors 0.08 in. w.c./100 feet	HV7, 22 HV9, 18
Ventilation	Outdoor air damper Demand control Friction rate Sealing	CO ₂ sensors 0.08 in. w.c./100 feet Seal class B	HV7, 22 HV9, 18 HV11
Ventilation	Outdoor air damper Demand control Friction rate Sealing Location	CO ₂ sensors 0.08 in. w.c./100 feet Seal class B Interior only	HV7, 22 HV9, 18 HV11 HV9
Ventilation Ducts	Outdoor air damper Demand control Friction rate Sealing Location Insulation level	CO ₂ sensors 0.08 in. w.c./100 feet Seal class B Interior only R-6	HV7, 22 HV9, 18 HV11 HV9 HV10
Ventilation	Outdoor air damper Demand control Friction rate Sealing Location Insulation level Gas storage	CO ₂ sensors 0.08 in. w.c./100 feet Seal class B Interior only R-6 90% E _t	HV7, 22 HV9, 18 HV11 HV9 HV10 WH1-4
Ventilation Ducts Service Water	Outdoor air damper Demand control Friction rate Sealing Location Insulation level	CO ₂ sensors 0.08 in. w.c./100 feet Seal class B Interior only R-6	HV7, 22 HV9, 18 HV11 HV9 HV10

Climate Zone 5 Recommendation Table

 Energy-saving recommendations for each climate zone on single page

- Tables color-coded to maps
- Prescriptive recommendations identify energy savings without costly calculations
- Tied to "how-to" section

Note: If the table contains "No recommendation" for a component, the user must meet the more stringent of either Standard 90.1 or the local code requirements in order to reach the 30% savings target.

Building Simulation – Key to Improving Building Performance

Simulation Drivers/Trends

- Simulation is still more art than science
- Major Issues:
 - Building data maintenance/storage throughout building life-cycle
 - Training...must train users in simulation methods not tools!
 - Tools must enable and encourage new technologies
 - Too many technologies/systems that many tools cannot simulate
- Code Compliance
- Points for Building Ratings
- Qualify for Utility or Government Rebates/Incentives
- Green/sustainable design and policy are driving simulation more than energy costs

Simulation Trends

- New tools/capabilities in established tools
 - Interoperability—IAI IFC, XML, BIM Standards
 - Visualization/VR
 - Integration-thermal, CFD, electrical, IEQ, visual
 - Risk assessment (insurance)
 - Embodied energy, LCI/LCA
 - Toxicity of built environment
- More tools, not fewer, customized to user needs
- Users continue to want more at lower effort

BIM – Integrating Energy and Environmental Performance, Code Compliance

2		
1	amera Draw Iools Window Plugins Help	
0000	0 0 X 9 C 4 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PM .
✓ Layer0		
1 0		
13 af	# Run Simulation	
11		
0F	Design Day Simulations	
1	Run Design Day Simulations (At least one design day must be selected when used with autosizing.)	
20 4	Select Design Days: Heating 1%	
00	Heating 5%	
30	Cooling 1% Cooling 5%	- 1-
夏秋	SURFACE.HEATTRANSFER, ZN_1_FLR_3_SEC_2_Ceiling, I-Nam	e /H
	Weather File Simulation ZC 0710 3 362 2 Celling, Frain celling, 1-13pe Weather File Simulation Celling, 1-13pe Weather File Simulation XSHRAE \$01:2004, See 55 55 [EAD ZM 1712H, 3:352 2 Celling, 1-13pe Statisf Face Extender File Simulation Weather file location overrides the LOCATION object.)	Roof, I- Construction Name
* 4	Run Weather File Simulation (Weather file location overrides the LOCATION object.)	nvironment
4 12 6	File Path: In.epw Browse Browse Browse	171
9 4	4, I- Number of vertices 0.000, 0.000, 3.800, I-X1, Y1, Z1 10.000, 0.000, 3.800, I-X2, Y2, Z2 10.000, 2.000, 3.800, I-X3, Y3, Z3	SHA .
92 99	2 Download weather files at <u>www.energyplus.gov</u> .	(HI
20		TALALA
: +		TALAS
	Annual Simulation	TATAT
Contraction of the second seco		TAKE
14	Start Date: January v 1 v Start Day: Sunday v End Date: December v 31 v	1745
Statement .		TH
	Results	(HT
	Report Annual Building Utility Performance Summary (ABUPS)	
	Report Surface Temperatures for Animation	1
	Cancel Begin	
Ready		li.

Simulation vs. Operating Energy

- Simulation is primarily a comparative tool rather than an absolute energy tool
- Simulation has been shown to be critical for designing buildings and making decisions
- BUT real buildings
 - Use more energy than simulations
 - Produce less power than simulations
 - Have worse controls than simulations
 - Have more occupant complaints than simulations
- Why?
 - Schedules differ from what was modeled
 - Installed vs. modeled components/system
 - Sub-optimal operation of HVAC systems
 - Disabling of control systems
 - Typical vs. actual weather year can differ significantly

Recent and Pending Legislation Significant to Buildings

Relevant Policy and Legislation

American Recovery and Reinvestment Act of 2009

- set aside \$16.8 billion for energy efficiency and renewable energy
- \$2.5 billion of that allocated to Applied Research, Development, Demonstration, and Deployment

Executive Order 13514

• requires federal buildings to meet sustainability targets

American Clean Energy and Security Act (in Senate)

- would require increased stringency of ASHRAE 90.1: 30% now; 50% by 2016
- would establish incentive-based retrofit program for energy savings

Federal Leadership in Environmental, Energy, and Economic Performance (signed Oct. 5)

- Establishes numerous goals for federal agencies
- Represents a transformative shift in the way the government operates by:
 - establishing GHGs as the integrating metric for tracking progress in federal sustainability
 - requiring a deliberative planning process
 - linking to budget allocations and OMB scorecards to ensure goal achievement

Requires agencies to meet sustainability targets, including:

- achieve 30% reduction in vehicle fleet petroleum use by 2020
- achieve 26% reduction in potable & 20% reduction in industrial, landscaping, & agricultural water consumption by 2020
- comply with new EPA stormwater management guidance
- achieve 50% recycling & waste diversion by 2015
- requires that 95% of all applicable procurement contracts will meet sustainability requirements
- requires 15% of buildings meet the Guiding Principles for High Performance and Sustainable Buildings by 2015
- design all new federal buildings that begin the planning process by 2020 to achieve net-zero energy by 2030

H.R.2454: Contains broad-reaching policies aimed at establishing a cap-and-trade system for greenhouse gases and new energy policies to provide reductions in energy use.

Energy Use

- Requires increased stringency of ASHRAE 90.1
 - 30% now
 - 50% by 2016
- Establishes incentive-based retrofit program for energy savings
- Establishes voluntary building energy labeling program for new construction
 - mandatory for DOE and EPA buildings
 - requires significant improvements to CBECS and RECS

American Clean Energy and Security Act (cont.)

Codes

- Provides grants to state and local building code departments to assist in enforcement
 - for training, equipment, increased staffing, and certifications and accreditations

Cap-and-Trade

- Establishes trading scheme of allowances for GHGs
 - begins at 90% of baseline in 2012; goes down to 15% after 2032
 - 80% to producers/importers; 20% to secondary users
 - 10% of producer/importer allowances subject to auction
 - offset credits available for destruction of CFCs

Reporting Requirements

- Stationary sources emitting more than 25k metric tons of CO₂ equivalent per year
- Facilities with on-site power plant or landfill must also report emissions
- Emitters must report emissions in 2011 for 2007–2010, and quarterly thereafter

- Set aside \$16.8 billion for energy efficiency and renewable energy
- \$2.5 billion of that allocated to Applied Research, Development, Demonstration, and Deployment

Enabling significant improvements in the energy performance of new and existing commercial buildings throughout the U.S.

- Mandates: Energy Independence and Security Act of 2007
 U.S. GHG Targets
- Strategy: Public-private partnerships to accelerate widespread adoption of advanced building technologies and best practices
- Activities: Market Outreach, Engagement and Demonstration High Performance Building Package R&D

- Called for development of Net-Zero Energy Commercial Building Initiative [EISA Section 422]:
 - commercial buildings newly constructed by 2030
 - 50% of commercial building stock by 2040
 - all commercial buildings by 2050
- Authorized DOE to collaborate with national labs, private sector, other federal agencies, non-governmental organizations to advance high-performance commercial buildings
- Directed DOE to recognize High-Performance Green Building Partnership Consortia and competitively select Consortium

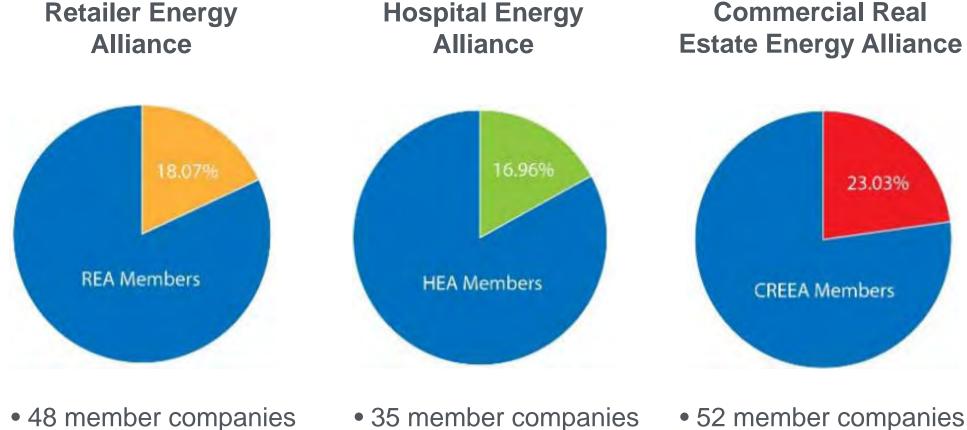
Market Outreach and Demonstration Critical to Reaching Goals

Commercial Building Partnerships

- DOE has partnered with more than 20 companies who have agreed to:
 - build one new building at
 50% less energy than
 Standard 90.1
 - retrofit a building that uses
 30% less energy than the
 CBECS baseline or 30% less
 than the mean of their building
 portfolio
- Labs provide technical assistance
- Recovery Act provides funding for second solicitation
- Funding should allow selection of 50–75 new CBPs

Informal associations among building owners and operators who want to reduce energy consumption

Current CBEAs


- Retailer Energy Alliance (launched February 2008)
- Commercial Real Estate Energy Alliance (launched April 2009)
- Hospital Energy Alliance (launched April 2009)

 Higher Education Energy Alliance (launching 2010)

Future CBEAs

 Government Energy Alliance (launch TBD)

Market Share of Alliance Members (as of April 2010)

• 2.548 billion sq. ft.

- 35 member companies
- 323 million sq. ft.

- 52 member companies
- 5.856 billion sq. ft.

Key Alliance Activities

- Commercial Technology Solutions: Targeting 50% Energy Savings at the System Level
 - Commercial Lighting Solutions (<u>www.lighting-solutions.org</u>)
 - In development:
 - Packaged HVAC Systems Solutions
 - Supermarket Refrigeration Solutions
 - Daylighting Solutions
- Supplier Summits
 - Dialogue between commercial building owners and operators and suppliers
 - Summits this year

HVAC & Refrigeration Orlando, Jan. 28, ASHRAE/AHR Expo

Renewables Austin, Feb. 23, Renewable Energy World Expo

Lighting Las Vegas, May 11, IES/LIGHTFAIR[®] **Envelope** Miami, June, AIA National Convention

Key Alliance Activities (cont.)

- Technology Identification and Screening
 - Nominated, promising energy-efficient technologies are evaluated by DOE and national laboratories
 - Speeds application of "proven" technologies in commercial buildings
 - Supports identification of suitable technologies for possible Technology Specifications
- Technology Specifications
 - 1st project: LED Outdoor Area Lighting
 - LEDs for Refrigerated Display Cases
 - Rooftop HVAC
 - High-Efficiency Parking Garage Lighting

- Why LEDs make sense for commercial parking lots
 - save energy
 - enhanced luminaire optical efficiency
 - better total system efficacy (lumens per watt)
 - control capability (e.g., dimming)
 - reduced maintenance costs
 - improved uniformity
 - environmentally friendly
- Timing
 - REA working group established April 2008
 - specifications completed early 2009
 - installed at test site July 2009

- We can do 30% (or more) energy savings cost-effectively today
- Creating design guides today (for 30%) → technology packages (for 50%) for tomorrow and beyond
- It's not one technology but how the technologies are integrated
- To get to zero, it will take improvements in technologies, cost reductions, and supporting policies

Questions?

Dru Crawley Dru.Crawley@bentley.com

Energy Demand Cost Water IEQ Carbon

Business (student, occupied room, sales)

Technical Support Documents or AEDGs

30% Energy Savings

Small Retail

www.pnl.gov/main/publications/external/technical_reports/PNNL-16031.pdf Small Office

www.pnl.gov/main/publications/external/technical_reports/PNNL-16250.pdf Highway Lodging

www.pnl.gov/main/publications/external/technical_reports/PNNL-17875.pdf Small Warehouse

www.pnl.gov/main/publications/external/technical_reports/PNNL-17056.pdf K–12 Schools

www.nrel.gov/docs/fy07osti/42114.pdf

50% Energy Savings

Medium Box Retail <u>www.nrel.gov/docs/fy08osti/42828.pdf</u> Grocery Stores <u>www.nrel.gov/docs/fy08osti/42829.pdf</u> Highway Lodging <u>www.pnl.gov/main/publications/external/technical_reports/PNNL-18773.pdf</u> Medium Office Buildings <u>www.pnl.gov/main/publications/external/technical_reports/PNNL-18774.pdf</u>

- Assessment of the Technical Potential for Achieving Zero-Energy Commercial Buildings <u>www.nrel.gov/docs/fy06osti/39830.pdf</u>
- Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings
 <u>ostp.gov/galleries/NSTC%20Reports/FederalRDAgenda</u> forNetZeroEnergyHighPerformanceGreenBuildings.pdf
- Zero Energy Buildings: A Critical Look at the Definition <u>www.nrel.gov/docs/fy06osti/39833.pdf</u>